VAHLE

COMPACT CONDUCTOR SYSTEMS VKS AND VKL

COMPACT CONDUCTOR SYSTEMS VKS AND VKL

CONTENTS	VKS	VKL
General	4, 5	4, 6
Layout planning	7	7
Standard sections	8, 9	24
Curves	10	24
Jointing material	10	25
Hangers	11	25
End caps	11	25
Feeds	12, 13	25, 26
Transfer guides	14	-
Transfer funnels	15, 16	-
Expansion sections	16	-
Sectionalizing	17	25
Current collectors	17	26
Compact collectors	17, 18, 19	-
Accessories and spares for collectors	20, 21, 22	26
KTW-Systems	26	26
Standard brackets	27	27
Snap-on brackets	27	27
7-pole VKS system for HRL	28	-
Examples for ordering	29, 30	29
Questionnaire	31	31

GENERAL

VAHLE conductor systems VKS and VKL are space saving conductor systems, designed to prevent any accidental contact and hazard to personnel and are test finger proof to regulations VDE 0470, part 1 (EN 60529), protection code IP 21. They comply with the accident and VDE regulations in electrical, mechanical and fire engineering cases. Collectors are proof against accidental touch only when fully entered into conductor rail.

Conductor system installations within reach of hand require a special protection on the part of operator against accidental touch of current collectors which are leaving the conductor rail (e.g. locking or cut-off the power).

This is applicable for voltages above 25 V AC respectively 60 V DC.

The creeping distance between the conductors of the VKS-conductor is 30 mm. The different plastic housings hold from 3 to 6 copper or stainless steel conductors. Multiple conductor systems can be easily designed by combining several plastic housings.

The minimal space required allows the systems to be integrated in the crane or hoist track or in other special runway profiles. The minimal required space allows a direct layout in rail tracks or special track profiles. The conductor systems VKS and VKL can be used for indoor and roof-over (rain protected) applications. They can be installed with lateral or suspended mounting and straight or curved tracks are available.

Approvals (VKS): UL-approval.

PLEASE	NOTE

Please consult factory for galvanizing plants, pickling lines, other aggressive or deep freeze ambients, as well as low voltage and data transmission applications, indicating special environmental conditions.

To speed up quotations and order processing, we would appreciate receiving your drawings or sketches for conductor systems with curves, dead sections, turntables, switches, etc.

Please use our questionnaire on page 31.

Electrical properties	VKS	VKL		
Max. ampacity	140 A ⁽²⁾ 30 A			
Allowed voltage	690 V ⁽³⁾	400 V		
Electrical strength DIN 53481	>25 kV/mm			
Special electrical strength IEC 60093	1 x 10 ¹⁴ Ohm x cm			
Surface resistance IEC 60093	2,1 x 10 ¹³ Ohm			
Creep resistance IEC 60112	CTI > 400			
Flammability	Flame resistant, self extinguishing, UL 94 VO			

Conductor material	Cross section mm ²	Impedance 50 Hz Ohm/1000 m	Resistance Ohm/1000 m
Copper	16	1.107	1.102
	25	0.730	0.723
	30	0.603	0.595
	35	0.520	0.510

Mechanical properties	N/mm²
Flexible strength	70 - 80
Tensile strength	40 - 53

Chemical resistance of the isolating profile at +45°C ambient temperature	
Benzine, petroleum, fats	resistant
Caustic soda up to 50%	resistant
Hydrochloric acid, concent	resistant
Sulfuric acid up to 50%	resistant

Water absorption	%
max. at 100°C	1
max. at 20°C	0.06

Ambient temperature range	°C
Rail length up to 4 m	-30 ⁽¹⁾ up to +55
Rail length > 4 m	von 0 ⁽¹⁾ up to +40

⁽¹⁾ Consult factory for use below 0° C (32° F)

^{(2) 80 %} ED

⁽³⁾ Not with UL-approval; U_{UL}= 600 V

GENERAL VKS

USE FOR INDOOR APPLICATIONS, ROOF-OVER OUTDOOR APPLICATIONS

Hoists, monorail systems, stacker cranes, machine tools, production and testing lines, also for sliding switches, turntables, hoisting stations, transfers, and many other applications, incl. data and signal transmission.

SECTIONS

The well insulating plastic housing holds 3 – 6 conductors and offer safe isolation. The ends of each section are milled in to provide the required creepage distance. 4 and 6 m standard lengths and shorter sections to coincide with your runway requirements are available. The ground conductor is identified by the international yellow colour coding. The conductor rail for control current is without PE-marking. The asymmetrical housing avoids phase reversing.

JOINTS

The plastic sections are connected with plastic joint caps, the conductors with spring-loaded copper connectors.

FEED SETS

End feeds or line feeds with terminal boxes are available, also low mounting line feeds for cable connection. Line feeds come factory assembled on $1\,\mathrm{m}$ long sections. End feeds come unassembled without any section.

HANGERS

All sections are to be fixed from at least 1 hanger and the maximum permissible support centres of 1000 mm (with double collectors. 800 mm), must be adhered to (see page 7). The hangers are equipped with M 6 bolts and hardware and can be mounted directly to hanger brackets, monorail tracks or special runway profiles. The sections are snapped into the hangers. Sliding hangers allow free movement of the conductor system to compensate for temperature variations. Fixpoint hangers with tapping screw from anchor points (see installation procedure). For this we have to consider a max. distance of 6 m between two fixpoints.

BRACKETS

Support brackets for easy installation are available (see page 27).

COLLECTORS

The collectors have a continuous rating of 20 A up to 120 A. One collector is required for each phase and earth conductor. The ground collectors have a yellow colour and different attachments to avoid interchangeability with phase collectors.

The collectors have spring loaded carbon brushes for a constant positive contact with the conductors. Collectors are to be mounted onto towing plates or are to be attached to the moving equipment by means of towing brackets type UM. Systems with transfers, switches, turntables, etc. require 2 single collectors or one double collector per conductor. The length of the collector cable may not exceed 3m if the added overcurrent protection device is not designed for the load capacity of this cable. Please refer also to regulations VDE 0100, part 430 and EN 60204-32. (Note: this might happen in case of several collectors running in one system).

The provided connecting cables are sufficient for the stated nominal currents. For the different laying procedures the reductions factors according to DIN VDE 0298-4 have to be considered.

CONDUCTOR DEAD SECTIONS

Conductor dead sections are electrical interrupts of the conductor. Under normal operating conditions a cross over with collectors to switch the voltage off or on is only allowed with low power ratings (control current). Conductor dead sections can be mounted at any position of the system. The plastic inserts are pushed into the copper profiles and ensure a smooth transfer of the collector brushes. The length of isolating section has to consider the total length of carbon brush and whether carbon brush must or must not bridge the isolating area.

Special attention is required for double collectors or collectors switched in parallel. Use double isolating sections where necessary.

Selection of conductors in accordance to ampere load and environmental conditions:

VKS .../63 copper conductor for power and control system and data transmission

- $\dots/100$ copper conductor for power and control system
- .../120 copper conductor for power and control system
- .../140 copper conductor for power and control system

Several combinations of cross sections are possible for one conductor type.

GENERAL VKL

USE INDOOR APPLICATIONS

Designed for small current loads and serve for the power supply of light cranes and for control current systems. The VKL conductor rail can also be used for hoists, jib cranes, power tools, machine tools, electrically operated gates, testing lines, and other applications.

SECTIONS

The plastic housing holds up to 5 conductors. The ground conductor is identified by international yellow colour code. 4 m standard lengths and shorter sections to coincide with your runway requirements are available. The straight sections are restricted as follows:

1. Max. system length: L = 100 m2. From the curve to system end: max. L = 50 m3. Between 2 curves: max. L = 15 m

The ends of each section are milled in to provide the required creepage distance. End caps, fixed with screws, can be installed to every section

JOINTS

The mechanical jointing of the conductor rail housing is done by means of a two-piece plastic joint cap. The conductors get spring-loaded copper connectors.

FEEDS

The feeds are available as end or line feeds. They are mounted on a $1\,\mathrm{m}$ section.

SUPPORTS

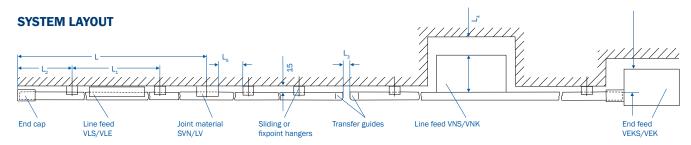
Maximum support distance of 1000 mm must be kept. The support hanger consists of a pvc part with a fixing screw and is arranged as a sliding hanger. The fixpoint in the middle of the system consists of a hanger with a locating clamp on each side of the hanger.

BRACKETS

To support the conductor rail to the crane track mounting brackets available (siehe Seite 27).

COLLECTORS

The glider type collectors are guided at the PVC housing. They are supplied with 1m long connecting cable. Longer cables are available upon request. The carbon brushes have a continuous current capacity of 10 A (15 A at 60% intermittent duty). Use two collectors for higher ratings. The towing arm is the mechanical flexible connection between collector and moving equipment.


The length of the collector cable should not exeed 3 m if the installed fuse is not suitable for the cross section of this connecting cable. See DIN VDE 0100, Teil 430 und DIN EN 60204-32. (Please note: This is often the fact if more than one collector is used in the system)

The provided connecting cables are sufficient for the stated nominal currents. For the different laying procedures the reductions factors according to DIN VDE 0298-4 have to be considered.

DEAD SECTIONS

Dead sections for control lines can be installed according to your instructions.

LAYOUT PLANNING FOR VKS AND VKL

L = Conductor rail section (Standard lengths: 1 m, 2 m, 3 m, 4 m, 5 m, 6 m or cut to suit the system)

L₁ = Support spacing for straight runs: max. 1m

for curved runs: max. 0.5 m

In curved runs: max. 0.5 m

L₂ = Extending length (max. 200 mm)

L₃ = Air gap for transfers, e.g. switches and dropout sections (3–5 mm)

L₄ = Space to remove feed box cover, if applicable

L₅ = Clearance for expansion of conductor system

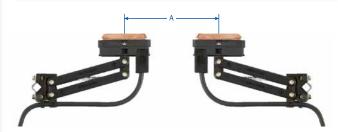
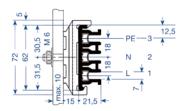
(min. 50 mm for VKS; min. 150 mm for VKL).

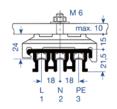
SYMBOLS IN LAYOUT PLANS

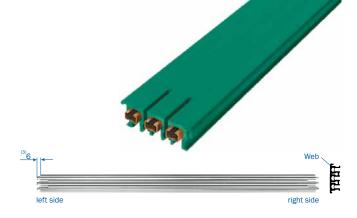
		VKS	VKL
	Track	-	-
	Conductor rail	VKS	VKL
T	Joint material	SVN	-
	Joint material	-	LV
	Fixpoint hanger	VEPS	VEP
	Sliding hanger	VAS	VA
	End cap	VES	VE
	End feed, power	VEKS	VEK
	End feed, control	VEKS	VEK
	Line feed, power	VNS	VNK
	Line feed, control	VNS	VNK
	Line feed, power and control	VLS	VLE
—	Transfer guide, straight	VU	-
	Transfer guide, oblique	VUS	-
	Transfer funnel	VEM	-
<u>I</u>	Expansion section	DVKS	-
——II——	Isolating assembly	VSTS	VST

MAX. SUPPORT SPACING

at KSTU 30-55 (Fig. 1)	VKS	VKL
for straight runs	1000 mm 800 mm	1000 mm
for curved runs	500 mm 400 mm	500 mm

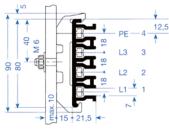



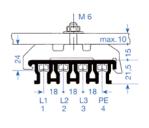

Fig. 1 A < 300 mm Support spacing 0.8 m A > 300 mm Support spacing 1.0 m

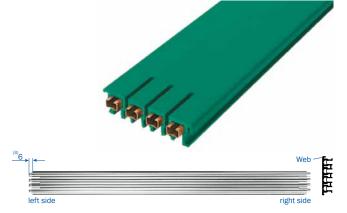

STANDARD SECTIONS VKS

3-POLE SECTIONS

Standard length 4 and 6 m $^{\rm (6)}$ Attention: Joint material to be ordered separately (see page 10).


Installation: lateral

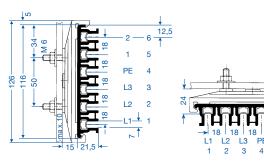

Installation: horizontal

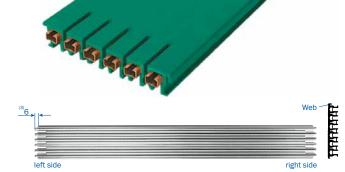

Type No of				e ⁽⁵⁾ 100 m at full rating se	Conductor cross section (4) / mm ²		Con- ductor	Weight kg/m	Order No.
	poles	35°C A	V		N,L/1.2	PE/3	material		
VKS 3/ 63 HS	3	63	690	11.5	2x16	1x16	Cu	1.221	15389•
VKS 3/ 63 SS	3	63	690	11.5	2x16	1x16	Cu	1.221	15394•
VKS 3/100 HS	3	100	690	12.6	2x25	1x25	Cu	1.454	15390•
VKS 3/100 SS	3	100	690	12.6	2x25	1x25	Cu	1.454	15395•
VKS 3/120 HS	3	120	690	12.5	2x30	1x30	Cu	1.589	15391•
VKS 3/120 SS	3	120	690	12.5	2x30	1x30	Cu	1.589	15396•
VKS 3/140 HS	3	140 (2)	690	11.3	2x35	1x35	Cu	1.724	15496•
VKS 3/140 SS	3	140 (2)	690	11.3	2x35	1x35	Cu	1.724	15608•

4-POLE SECTIONS

Standard length 4 and 6 m $^{(6)}$ Attention: Joint material to be ordered separately (see page 10).

Installation: lateral


Installation: horizontal


Туре	No. of	max. ampere rating at			Conductor cross section ⁽⁴⁾ / mm ²		Con- ductor	Weight kg/m	Order No.
	poles	35°C A	V	V	L ₁ -L ₃ /1-3	PE/4	material		
VKS 4/ 63 HS	4	63	690	11.5	3x16	1x16	Cu	1.459	15399•
VKS 4/ 63 SS	4	63	690	11.5	3x16	1x16	Cu	1.459	15404 •
VKS 4/100 HS	4	100	690	12.6	3x25	1x16	Cu	1.693	15400•
VKS 4/100 SS	4	100	690	12.6	3x25	1x16	Cu	1.693	15405•
VKS 4/120 HS	4	120	690	12.5	3x30	1x16	Cu	1.828	15401•
VKS 4/120 SS	4	120	690	12.5	3x30	1x16	Cu	1.828	15406•
VKS 4/140 HS	4	140 (2)	690	11.3	3x35	1x16	Cu	1.956	15431•
VKS 4/140 SS	4	140 (2)	690	11.3	3x35	1x16	Cu	1.956	15654•

5- AND 6-POLE SECTIONS

Standard length 4 and 6 m $^{(6)}$

Attention: Joint material to be ordered separately (see page 10).

Installation: lateral

Installation: horizontal

Туре	of rating at voltag	Nominal voltage ⁽⁵⁾			Conductor cross section ⁽⁴⁾ / mm ²		Con- ductor	Weight kg/m	Order No.	
	poles	35°C A	V	full rating V	L ₁ -L ₃ / 1-3	PE/4	1.2/ 5.6	material		
VKS 5/ 63 HS (1)	5	63	690	11.5	3x16	1x16	1x16	Cu	2.058	15409•
VKS 5/ 63 SS (1)	5	63	690	11.5	3x16	1x16	1x16	Cu	2.058	15414•
VKS 5/100 HS (1)	5	100	690	12.6	3x25	1x16	1x16	Cu	2.292	15410•
VKS 5/100 SS (1)	5	100	690	12.6	3x25	1x16	1x16	Cu	2.292	15415•
VKS 5/120 HS (1)	5	120	690	12.5	3x30	1x16	1x16	Cu	2.427	15411•
VKS 5/120 SS (1)	5	120	690	12.5	3x30	1x16	1x16	Cu	2.427	15416•
VKS 5/140 HS (1)	5	140 (2)	690	11.3	3x35	1x16	1x16	Cu	2.549	15487 •
VKS 5/140 SS (1)	5	140 (2)	690	11.3	3x35	1x16	1x16	Cu	2.549	15655•
VKS 6/ 63 HS	6	63	690	11.5	3x16	1x16	2x16	Cu	2.202	15419•
VKS 6/ 63 SS	6	63	690	11.5	3x16	1x16	2x16	Cu	2.202	15424•
VKS 6/100 HS	6	100	690	12.6	3x25	1x16	2x16	Cu	2.436	15420•
VKS 6/100 SS	6	100	690	12.6	3x25	1x16	2x16	Cu	2.436	15425•
VKS 6/120 HS	6	120	690	12.5	3x30	1x16	2x16	Cu	2.571	15421•
VKS 6/120 SS	6	120	690	12.5	3x30	1x16	2x16	Cu	2.571	15426•
VKS 6/140 HS	6	140 (2)	690	11.3	3x35	1x16	2x16	Cu	2.693	15260•
VKS 6/140 SS	6	140 (2)	690	11.3	3x35	1x16	2x16	Cu	2.693	15656•

⁽¹⁾ VKS 5 eliminates conductor number 6; plastic housing however identical to VKS 6.

⁽³⁾ Section is superseded 6 mm at 20 °C UT.

⁽⁴⁾ Same cross section at PE (ground) when used for control line. Other conductor combinations are possible.

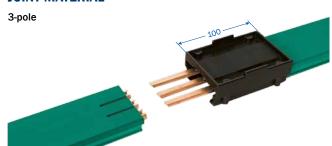
 ⁽⁵⁾ Not with UL-approval; UUL= 600 V
 (6) For supply lengths above 4m refer to restricted ambient temperature (page 4).
 Suffix types e.g. 2m VKS 4/120 with PE R VKS 4/120 -2 HS- Order No. 154012. Shorter sections are made up from the next larger standard length.

Only for conductor system without PE-marking

CURVED SECTIONS, JOINT MATERIAL VKS

CURVED SECTIONS (2)

per your layout drawing max. L = 3.60 m, support spacing: ~ 500 mm, max. angle 180 $^{\circ}$


Inside curve: R Outside curve: R

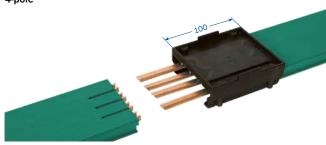
CURVED SECTIONS (2)

3-pole

Туре	R mm	Surcharge Order No. VKS 3
Horizontal curve, right	400 - 900	150385
Horizontal curve, left	400 - 900	150386
Horizontal curve, right	>900	153120
Horizontal curve, left	>900	153130
Inside curve	200 - 800	150387
Inside curve	>800	153040
Outside curve	200 - 800	150388
Outside curve	>800	153050

JOINT MATERIAL

Туре	No. of poles	Weight kg	Order No.
SVN 3/ 63 - 100	3	0.112	156533
SVN 3/120 - 140	3	0.112	156534

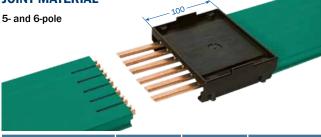

CURVED SECTIONS (2)

4-pole Configuration as shown above!

Туре	R mm	Surcharge Order No. VKS 4
Horizontal curve, right	400 - 900	150389
Horizontal curve, left	400 - 900	150391
Horizontal curve, right	>900	153717
Horizontal curve, left	>900	150110
Inside curve	200 - 800	150392
Inside curve	>800	153718
Outside curve	200 - 800	150393
Outside curve	>800	150100

JOINT MATERIAL

4-pole

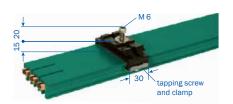

Туре	No. of poles	Weight kg	Order No.
SVN 4/ 63 - 100	4	0.136	156535
SVN 4/120 - 140	4	0.136	156536

CURVED SECTIONS (2)

5- and 6-pole Configuration as shown above!

Туре	R	Surcharge 0	rder No.
	mm	VKS 5	VKS 6
Horizontal curve, right	400 - 900	150394	150398
Horizontal curve, left	400 - 900	150395	150399
Horizontal curve, right	>900	153719	153721
Horizontal curve, left	>900	152090	152110
Inside curve	200 - 800	150396	150401
Inside curve	>800	153720	153722
Outside curve	200 - 800	150397	150402
Outside curve	>800	152080	152100

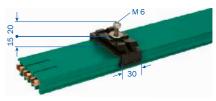
JOINT MATERIAL



Туре	No. of poles	Weight kg	Order No.
SVN 5/ 63 - 100	5	0.180	156537
SVN 5/120 - 140	5	0.180	156538
SVN 6/ 63 - 100	6	0.194	156539
SVN 6/120 - 140	6	0.194	156540

HANGERS, END CAP VKS

FIXPOINT HANGER (1)


3-pole with tapping screw and clamp

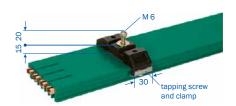
Туре	Weight kg	Order No.
VEPS 3	0.042	153070

SLIDING HANGER (1)

3-pole

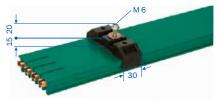
Туре	Weight kg	Order No.
VAS 3	0.036	153060

END CAP(2)


3-pole suitable left and right

Туре	Weight kg	Order No.
VES 3 - L	0.033	153080
VES 3 - M	0.033	152023

FIXPOINT HANGER (1)


4-pole with tapping screw and clamp

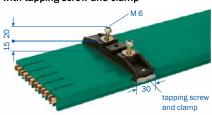
Туре	Weight kg	Order No.
VEPS 4	0.046	150120

SLIDING HANGER (1)

4-pole

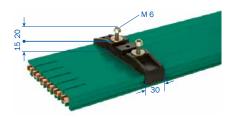
Туре	Weight kg	Order No.
VAS 4	0.040	150130

END CAP(2)


4-pole suitable left and right

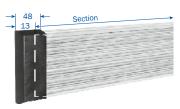
Туре	Weight kg	Order No.
VES 4 - L	0.039	150140
VES 4 - M	0.039	152022

FIXPOINT HANGER (1)


6-pole with tapping screw and clamp

Туре	Weight kg	Order No.
VEPS 6	0.062	152120

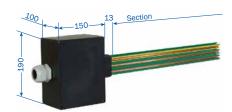
SLIDING HANGER (1)


6-pole

Туре	Weight kg	Order No.
VAS 6	0.056	152130

END CAP (2)

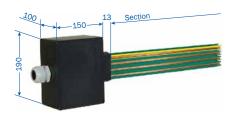
6-pole suitable left and right


Туре	Weight kg	Order No.
VES 6 - L	0.051	152140
VES 46 - M	0.051	152021

⁽²⁾ L = loose; c/w hardware

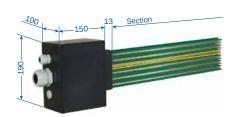
FEEDS VKS

END FEED (1)


3-pole Terminal box with terminal clamps

Туре	Cable gland (2)	Ampacity A	Weight kg	Order No.
VEKS 3/63 - 120 L	ST-M 40 x 1.5	63 - 120	1.150	156422
Surcharge for assembling				156423

END FEED (1)

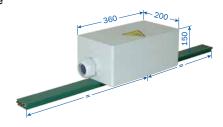

4-pole Terminal box with terminal clamps

Туре	Cable gland (2)	Ampacity A	Weight kg	Order No.
VEKS 4/63 - 120 L	ST-M 40 x 1.5	63 - 120	1.230	156421
Surcharge for assembling				156423

END FEED (1)

5- and 6-pole Terminal box with terminal clamps

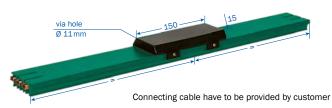
Туре	Cable gland ⁽²⁾	Ampacity A	Weight kg	Order No.
VEKS 5/63 - 120 L	ST-M 40 x 1.5 ST-M 20 x 1.5	63 - 120	1.380	156420
VEKS 6/63 - 120 L	ST-M 40 x 1.5 ST-M 20 x 1.5	63 - 120	1.460	156419
Surcharge for assembling				156423


ST - M20 x 1,5 for $\emptyset = 7-13 \text{ mm}$

⁽¹⁾ End feeds loose as components. Sections are to be ordered separately (see page 8). (2) Cable gland ST - M40 x 1,5 for Ø = 19-28 mm

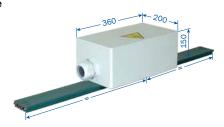
FEEDS VKS

LINE FEED (1)


3-pole

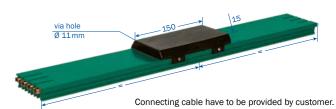
Type (2)	Cable gland (2)	Ampacity A	Weight kg	Order No.
VNS 3/63-140	STR-M63 x 1.5	63-140	1.876	157147

LINE FEED (1)


3-pole without cable connection; cable by others terminal bolt M $\rm 6$

Туре	Lug mm²	Ampacity A	Weight kg	Order No.
VLS 3/ 63	-	63	0.071	156948
VLS 3/100-120 (3)	25	100-120	0.137	156944
VLS 3/140 (3)	35	140	0.173	156958

LINE FEED (1)


4-pole

Type ⁽²⁾	Cable gland (2)	Ampacity A	Weight kg	Order No.
VNS 4/63-140	STR-M63 x 1.5	63-140	1.982	157146

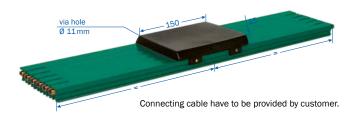
LINE FEED (1)

4-pole without cable connection; cable by others terminal bolt M $\rm 6$

Туре	Lug mm²	Ampacity A	Weight kg	Order No.
VLS 4/ 63	-	63	0.091	156947
VLS 4/100-120 (3)	25	100-120	0.179	156943
VLS 4/140 (3)	35	140	0.227	156957

LINE FEED (1)

5- and 6-pole



Type (2)	Cable gland (2)	Ampacity A	Weight kg	Order No.
VNS 5/63-140	STR-M63 x 1.5 STR-M20 x 1.5	63-140	2.080	157145
VNS 6/63-140	STR-M63 x 1.5 STR-M20 x 1.5	63-140	2.200	157144

LINE FEED (1)

5- and 6-pole

without cable connection; cable by others terminal bolt M 6

Туре	Lug mm²	Ampacity A	Weight kg	Order No.
VLS 5/ 63	-	63	0.115	156946
VLS 5/100-120 (3)	25	100-120	0.225	156942
VLS 5/140 (3)	35	140	0.285	156956
VLS 6/ 63	25	63	0.123	156945
VLS 6/100-120 (3)	35	100-120	0.255	156941
VLS 6/140 (3)	25	140	0.327	156955

⁽¹⁾ Line feeds will be normaly installed on 1m sections. This sections have to be ordered seperatly. (see page 8). Connecting cable by customer. (2) Cable gland STR - M63 x 1,5 for Ø= 28-45 mm Cable connection main: M10

STR - M20 x 1,5 for Ø= 5-13 mm Cable connection control: M5

⁽³⁾ Cable connection with attached special cable lugs for single cores 35 mm² (up to conductor-Ø 8.5 mm) for 140 A, 25 mm² (up to conductor-Ø 8.2 mm) for 10 0-120 A

TRANSFER GUIDES VKS

TRANSFER GUIDES (1)

3-pole – for transfers, switches, spur lines max. horizontal and vertical offset: ±2 mm Application: – straight cuts

- oblique cuts, lateral

Photo shows left version

Туре	Order No. Left version	Order No. Right version
VU 3 S-M	150191	150192
VU 3 S-L	150188	

Typ M: factory assembled;

Typ L: (2) loose delivery as a single component, complete with accessories

TRANSFER GUIDE OBLIQUE CUT(1)

3-pole – for switches and turntables prepared per your layout drawings VApplication: oblique cuts, horizontal

Photo shows left version

IP 21 up to $x = 45^{\circ}$

71		Order No. Right version	
VUS 3 H	150410	150420	

TRANSFER GUIDE(1)

4-pole – for transfers, switches, spur lines max. horizontal and vertical offset: ±2 mm Application: straight cuts

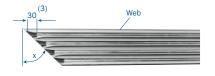


Photo shows left version

-710-0		Order No. Right version	
VU 4	150160	150390	

TRANSFER GUIDE OBLIQUE CUT(1)

4-pole – for switches and turntables prepared per your layout drawings Application: oblique cuts, horizontal and lateral

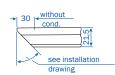


Photo shows left version

IP 21 up to $x = 45^{\circ}$

Туре	Order No.	Order No.
	Left version	Right version
VUS 4 H	150170	150400
VUS 4 S	153564	153565

H = for horizontal mounting S = for lateral mounting (see page 6 and 7)

TRANSFER GUIDE (1)

6-pole – for transfers, switches, spur lines max. horizontal and vertical offset: ±2 mm Application: – straight cuts

- oblique cuts, lateral

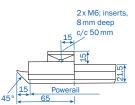


Photo shows left version for VKS 6 and VKS 5

Туре	Order No. Left version	Order No. Right version
VU 6 S-M	153801	153802
VU 6 S-L	153215	

Typ M: factory assembled;

Typ L: (2) loose delivery as a single component, complete with accessories

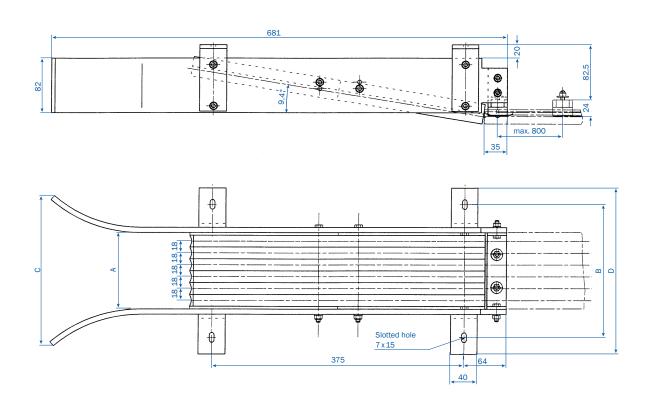
TRANSFER GUIDE OBLIQUE CUT⁽¹⁾

5- and 6-pole – for switches and turntables prepared per your layout drawings Application: oblique cuts, horizontal

Photo shows left version

Туре	Order No. Left version	Order No. Right version
VUS 5 H	152170	152300
VUS 6 H	152310	152320

⁽¹⁾ Fig. shows transfer and section. The section is included in the overall length. It will be charged separately for individual orders. (Specify type of conductor rail).

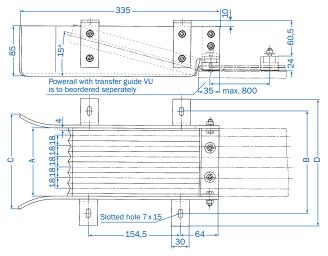

⁽²⁾ Preparation of conductor rail ends by others, following attached instructions. Please specify conductor type when ordering.

⁽³⁾ Length without conductors.

TRANSFER FUNNELS VKS

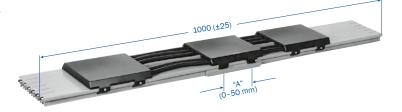
TRANSFER FUNNELS FOR KSTU 30/55

for max. speed $v = 100 \,\text{m/min.}^{(2)}$


Туре	A mm	B mm	C mm	D mm	Weight kg	Order No.	VU L ⁽¹⁾	VU R ⁽¹⁾
EFT V3 - KSTU	62	148	175	198	3.140	156144	150370	150380
EFT V4 - KSTU	80	166	193	216	3.320	156145	150160	150390
EFT V6 - KSTU	116	202	229	252	3.680	156146	152280	152290

⁽¹⁾ Conductor rail section must be factory prepared. Order separately for left hand VU...L, for right hand VU...R. (2) Higher speeds on request

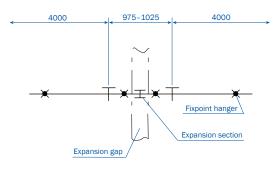
TRANSFER FUNNELS / EXPANSION SECTIONS VKS


TRANSFER FUNNELS FOR KSFU 25(1)

for max. speed $v = 100 \text{ m/min.}^{(2)}$

Туре	A mm	B mm	C mm	D mm	Weight kg	Order No.	VU L ⁽¹⁾	VU R ⁽¹⁾
EFT V3 - KSFU 25	62	120	108	162	1.400	153337	150370	150380
EFT V4 - KSFU 25	80	138	126	180	1.520	153336	150160	150390
EFT V5 - KSFU 25	98	156	144	198	1.640	156132	152160	152270
EFT V6 - KSFU 25	116	174	162	216	1.760	153335	152280	152290

EXPANSION SECTIONS


Type ⁽³⁾	Weight kg	Order No. (with PE) HS	Order No. (without PE) SS	Type ⁽³⁾	Weight kg	Order No. (with PE) HS	Order No. (without PE) SS
DVKS 3/ 63	1.900	153230	153240	DVKS 5/ 63	3.266	152340	152380
DVKS 3/ 100	2.090	153250	150551	DVKS 5/ 100	3.586	152350	150554
DVKS 3/ 120	2.215	153623	150552	DVKS 5/ 120	3.811	153633	150555
DVKS 3/ 140	2.346	156588	156589	DVKS 5/ 140	4.030	156596	156597
DVKS 4/ 63	2.412	150480	150510	DVKS 6/ 63	3.582	152360	152390
DVKS 4/ 100	2.622	150490	150516	DVKS 6/ 100	3.962	152370	150556
DVKS 4/ 120	2.852	153628	150553	DVKS 6/ 120	4.242	153638	150557
DVKS 4/ 140	3.027	156590	156595	DVKS 6/ 140	4.504	156598	156599

Application

Expansion sections are required to compensate for expansion and contraction in system expansion gaps (building or track). The expansion capacity is 50 mm. More tolerance require more than one VKS expansion section. They do not interrupt electrical power, so there is no need for an extra feeding. Expansion joints do not influence the voltage drop of a system.

Mounting

The expansion section is installed in the center between two fix points in the building/track expansion gap area. The gap dimension "A" equals the gap of the building/track. The remaining conductor rail is laid according to the installation instructions.

Sketch 1

 $^{(1) \}quad \text{Conductor rail section must be factory prepared. Order separately for left hand VU ... L, or for right hand VU ... R. \\$

⁽²⁾ Higher speeds on request.

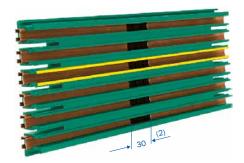
⁽³⁾ Suffix types e.g. DVKS 3/10 with PE DVKS 3/60 HS Order No. 153230.

SECTIONALIZING/CURRENT COLLECTOR VKS

CONDUCTOR DEAD SECTION

(1) Position of the conductor dead section and item number of the conductor profile which has to be seperated have to be advised by ordering.

Туре	Order No.	Colour
VSTS 1/10-63 M	156993	black
VSTS 1/100 M	150150	black
VSTS 1/120 M	151674	black
VSTS 1/140 M	156335	black


M = factory assembled

with $2\,\mbox{m}$ connecting cable; contact pressure: ca. 5 N

For transfer funnels EFT V...-KSTU

(in funnel area ±10 to all sides)

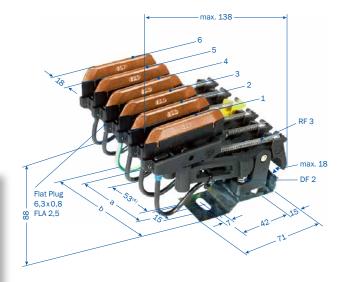
Typ ⁽³⁾	Ampacity	Connecting cable		Lift & Swivel	Weight	Order No.	
	Α	A/	d max/	deflection	kg	Phase	PE
		mm²	mm	mm		black	yellow
KSTU 30	30	2.50	5	±20	0.240	152087	152088
KSTU 55	55	6.00	11	±20	0.368	154441	154442

For double arrangement of current collectors and support spacing for conductor system see page 5.

COMPACT COLLECTOR

with 1 m connecting cable for transfer funnel EFT V... – KSFU 25 (in funnel area ± 10 to all sides)

Phase distance 18 mm


Lift and swivel deflection ±15 mm

Contact pressure: ca. 3.5 N per carbon

PE on No. 4, with 3-poles on No. 3, other arrangements possible

PE is first contact while entering conductor rail

Type (3)	Pol-				Order No.	
	es	а	b	Weight	with PE	without PE
		mm	mm	kg	HS	ST
KSFU 25-2	2	18	43	0.182	155050	155059
KSFU 25-3	3	54	79	0.295	155051	155060
KSFU 25-4	4	54	79	0.352	155052	155061
KSFU 25-5	5	80	115	0.460	155053	155062
KSFU 25-6	6	80	115	0.517	155054	155063
Separately available:					PH	PE
Collector KSF	U 25				155025	155026

⁽¹⁾ Description of conductor profiles see page 8.

 $[\]enskip \enskip \enskip (2) \enskip \enskip$

⁽³⁾ Types to be completed e.g. KSTU 30 R KSTU 30 PH Order No. 152087

⁽⁴⁾ Only with 5 and 6-pole version.

COLLECTOR VKS

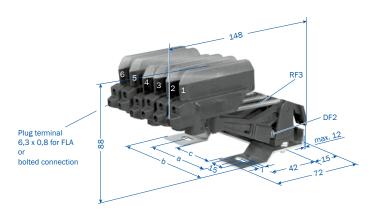
COMPACT COLLECTOR KESR 32-55

Two-way conveying

max. ampacity: 1 flat plug connection 32A - FLA 2,5

40A - FLA 4,0

55A - FLA 6,0


Phase distance 18 mm

Lift and swivel deflection ±15 mm

Contact pressure: ca. 3.5 N per carbon

PE on No. 4, with 3-poles on No. 3, other arrangements possible

PE is first contact while entering conductor rail

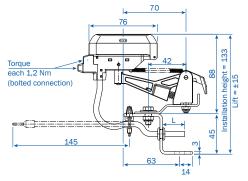
Choice of connecting cable see page 20

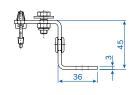
KESR 32-55 F (FLAT PLUG CONNECTION)

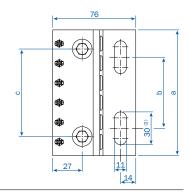
Type (1)	Poles	а	b	С	Weight	Base plate	Order No.	
		mm	mm	mm	kg		with PE HS	without PE ST
KESR 32-55 F- 3-18	3	54	79	-	0.393	4 poles (No. 4 = free)	157285	157290
KESR 32-55 F- 4-18	4	54	79	-	0.457	4 poles	157286	157291
KESR 32-55 F- 5-18	5	80	115	53	0.521	6 poles (No. 6 = free)	157287	157292
KESR 32-55 F- 6-18	6	80	115	53	0.585	6 poles	157288	157293
Separately available:							Phase	PE
Collector KESR 32-55 F/18							157274	157275

KESR 32-55 S (BOLTED CONNECTION)

Type (1)	Poles	а	b	С	Weight	Base plate	Order No.	
		mm	mm	mm	kg		with PE HS	without PE ST
KESR 32-55 S- 3-18	3	54	79	-	0.405	4 poles (No. 4 = free)	157220	157225
KESR 32-55 S- 4-18	4	54	79	-	0.476	4 poles	157221	157226
KESR 32-55 S- 5-18	5	80	115	53	0.547	6 poles (No. 6 = free)	157222	157227
KESR 32-55 S- 6-18	6	80	115	53	0.618	6 poles	157223	157228
Separately available:							Phase	PE
Collector KESR 32-55 S/18							157294	157295


max. ampacity: 1 bolted connection 32A - AEA 2,5 | 40A - AEA 4,0 | 55A - AEA 6,0


ADAPTOR FOR COMPACT COLLECTORS


Туре	Poles	a mm	b mm	c mm	Weight kg	Order No.
AD4 - KESR/KESL	4	79	35	54	0.210	157368
AD6 - KESR/KESL	6	115	65	80	0.310	157367
AD8 - KESR/KESL	8	151	100	120	0.410	157432

Ready assembled collectors incl. adapter on request.

- (1) Types to be completed e.g. KESR 32-55 S-4-18 with PE and bolted connection R KESR 32-55 S-4-18 HS Order No. 157221.
 (2) 25 at AD4 KESR/KESL

COMPACT COLLECTOR VKS

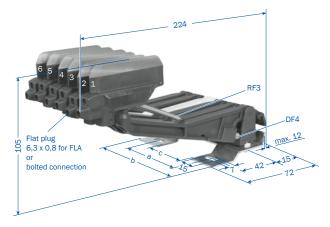
COMPACT COLLECTOR KESL 32-55

Two-way conveying

max. ampacity: 1 flat plug connection 32 A - FLA 2,5

40 A - FLA 4,0

55 A - FLA 6,0


Phase distance 18 mm

Lift and swivel deflection ±30 mm

Contact pressure: ca. 7 N per carbon

PE on No. 4, with 3-poles on No. 3, other arrangements possible

PE is first contact while entering conductor rail

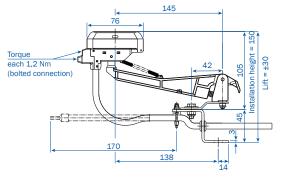
Choice of connecting cable see page 20

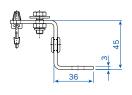
KESL 32-55 F (FLAT PLUG CONNECTION)

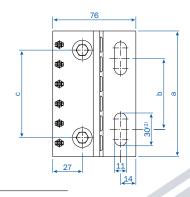
Type (1)	Poles	а	b	С	Weight	Base plate	Order No.	
		mm	mm	mm	kg		with PE HS	without PE ST
KESL 32-55 F- 3-18	3	54	79	-	0.438	4 poles (No. 4 = free)	157199	157300
KESL 32-55 F- 4-18	4	54	79	-	0.517	4 poles	157200	157301
KESL 32-55 F- 5-18	5	80	115	53	0.596	6 poles (No. 6 = free)	157201	157302
KESL 32-55 F- 6-18	6	80	115	53	0.675	6 poles	157202	157303
Separately available:							Phase	PE
Collector KESL 32-55 F/18							157188	157189

KESL 32-63 S (BOLTED CONNECTION)

Type (1)	Poles	а	b	С	Weight	Base plate	Order No.	
		mm	mm	mm	kg		with PE HS	without PE ST
KESL 32-63 S- 3-18	3	54	79	-	0.451	4 poles (No. 4 = free)	157190	157296
KESL 32-63 S- 4-18	4	54	79	-	0.537	4 poles	157191	157297
KESL 32-63 S- 5-18	5	80	115	53	0.623	6 poles (No. 6 = free)	157192	157298
KESL 32-63 S- 6-18	6	80	115	53	0.709	6 poles	157193	157299
Separately available:							Phase	PE
Collector KESL 32-63 S/18							157186	157187


max. ampacity: 1 bolted connection 32 A - AEA 2,5 | 40 A - AEA 4,0 | 55 A - AEA 6,0 | 63 A - AEA 10,0


ADAPTOR FOR COMPACT COLLECTORS


Туре	Poles	a mm	b mm	c mm	Weight kg	Order No.
AD4 - KESR/KESL	4	79	35	54	0.210	157368
AD6 - KESR/KESL	6	115	65	80	0.310	157367
AD8 - KESR/KESL	8	151	100	120	0.410	157432

Ready assembled collectors incl. adapter on request.

⁽¹⁾ Types to be completed e.g. KESL 32/63 with PE and bolted connection R KESL 32-63 S-4-18 HS Order No. 157191.
(2) 25 at AD4 - KESR/KESL

ACCESSORIES FOR COLLECTOR VKS

CONNECTING CABLE FLA

high flexible for collectors with flat plug connection

(Arrangement to different collector types according to pages 18 and 19.)

Operating conditions -15°C bis 70°C

L = 1 m with flat plug 6.3×0.8

Longer connection cables available.

Table 1

Туре				Order No.	
	Cross section mm²	Outer-Ø mm	Wgt. kg	Phase black	PE green/ yellow
FLA 2,5	2.50	4.00	0.080	165049	165050
FLA 4	4.00	6.00	0.100	165051	165052
FLA 6	6.00	7.00	0.150	166368	166369

CONNECTING CABLE AEA

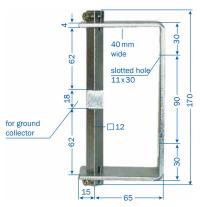
high flexible for collectors with Bolted connection

(Arrangement to different collector types according to pages 18 and 19.)

Operating conditions -15°C bis 70°C

L = 1 m with wire ferrules

Longer connection cables available.


Table 2

Туре				Order No.			
	Cross section mm²	Outer-Ø mm	Wgt. kg	Phase black	PE green/ yellow		
AEA 2,5	2.50	4.00	0.038	143080	143079		
AEA 4,0	4.00	6.00	0.063	143078	143077		
AEA 6,0	6.00	7.00	0.085	143076	143075		
AEA 10,0	10.00	8.50	0.160	143074	143073		

TOWING ARM

for current collectors

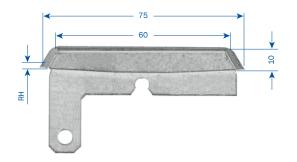
KSTU 30/55 see page 15

Collector with PE

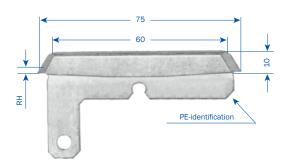
Туре	Weight kg	Order No.
UMAS 12 HS-B	0.600	152232

for control collectors

KSTU 30/55 see page 15

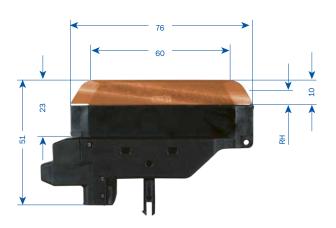

Collector without PE

Туре	Weight kg	Order No.
UMAS 12 ST	0.600	152234


SPARE PARTS FOR COLLECTORS VKS

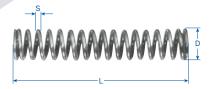
BRUSHES

KMK 30-55 PH


KMK 30-55 PE

KMKU 25/18⁽¹⁾

MK 55, MK 63



Туре	for collectors	Thickness of brush	RH mm	Weight kg	Order No.
KMK 30-55 PH	KSTU 30-55	4.40 mm	4.00	0.031	154440
KMK 30-55 PE	KSTU 30-55	4.40 mm	4.00	0.034	154453
KMKU 25/18	KSFU 25	4.20 mm	3.50	0.035	155002
MK 55 F/18	KESR 32-55 F, KESL 32-55 F	4.20 mm	3.50	0.044	157308
MK 63 S/18	KESR 32-55 S, KESL 32-63 S	4.20 mm	3.50	0.053	157309

Dimension RH = allowed rest height

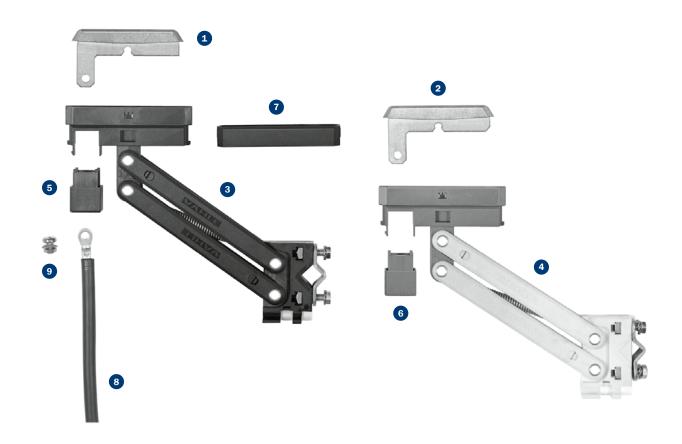
SPARE PARTS VKS

SPRINGS

Pressure spring DF

Tension spring RF

Туре	for collectors	S mm	D mm	L mm	Order No.
DF 2	KSFU25, KESR 32-55	0.90	7.70	43.00	153848
RF 3	KSFU 25, KESR 32-55, KESL 32-63	0.40	4.40	31.00	153849
DF 4	KESL 32-63	1.10	6.40	41.00	157312


SPARE PARTS

Туре	Order No.
Joint cap for VKS 3	152012
Joint cap for VKS 4	152013
Joint cap for VKS 5 und 6	152014
Plug-in connector (1 pole, copper) for VKS/ 10-100 A	153803
Plug-in connector (1 pole, copper) for VKS/120-140A	152672
Insulating piece for sectionalizing (1 pole) VSTS 1/63 L	156934
Insulating piece for sectionalizing (1 pole) VSTS 1/100 L	150419
Insulating piece for sectionalizing (1 pole) VSTS 1/120 L	151669
Insulating piece for sectionalizing (1 pole) VSTS 1/140 L	156336
Feed terminal, (1 pole) for line feed VNS	151774
Feed terminal, (1 pole) for line feed VLS	153603

SPARE PARTS FOR COLLECTORS VKS

COLLECTOR KSTU 30-55

Туре	Order No.		Weight kg	Order No.
1	Brush	Phase	0.031	154440
2	Brush	PE	0.031	154453
3	Collector arm KSTU, complete	Phase	0.083	152275
4	Collector arm KSTU, complete	PE	0.083	152276
5	Cover cap	Phase (black)	0.002	152291
6	Cover cap	PE (green)	0.002	152292
7	Distance spacer for KSTU 30-55		0.003	152293
8	Connecting cable RKA 2,5 PH, 2 m long	Phase	0.150	154447
	Connecting cable RKA 2,5 PE, 2 m long	PE	0.150	154448
8	Connecting cable RKA 6 PH, 2 m long	Phase	0.260	154449
	Connecting cable RKA 6 PE, 2 m long	PE	0.260	154450
9	Connecting screw		0.002	152658

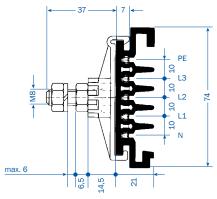
STANDARD SECTIONS VKL

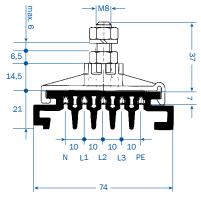
SECTIONS

Standard length 4 m

Support spacing: 1000 mm

Max. system length: 100 m

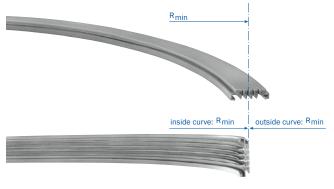

HS = with PE SS = without PE



Туре	Poles	max. continuous current A at 35°C	Voltage rating V	Voltage drop per 100 m at full rating V	Copper cross section CU mm ²	Weight kg/m	Order No.
VKL 3/30 HS	3	30	400	10.3	9	1.104	28119•
VKL 3/30 SS	3	30	400	10.3	9	1.104	28120•
VKL 4/30 HS	4	30	400	10.3	9	1.180	28121•
VKL 4/30 SS	4	30	400	10.3	9	1.180	28122•
VKL 5/30 HS	5	30	400	10.3	9	1.256	28123•
VKL 5/30 SS	5	30	400	10.3	9	1.256	28124•

5-poles	4-poles	3-poles	5-poles	4-poles	3-poles
HS with PE			SS without PE		
PE	PE	PE	1	1	1
L3	L3		2	2	
L2	L2	L	3	3	3
L1	L1		4	4	
N		N	5		5

[•] Suffix types e.g. $2\,m$ VKL $4/30\,$ with PE R VKL $4/30\,$ $-2\,$ HS Order No. 281212 Shorter sections are made up from the next larger standard length.

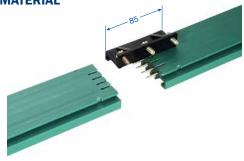


lateral suspended

CURVED SECTIONS(1)

max. L = 3.60 m, support spacing: ~ 500 mm according to your layout drawing

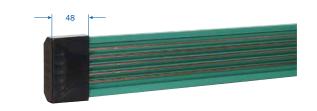
	R _{min} mm	Surcharge Order No. VKL
Horizontal curve, right	600	280510
Horizontal curve, left	600	280100
Inside curve, lateral	600	280520
Outside curve, lateral	400	280090



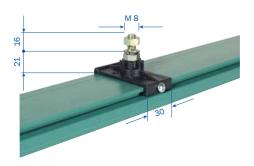
Horizontal curve, right = web outside Outside curve, lateral = conductors outside (not shown)

⁽¹⁾ Curves with less than 2000 mm radius will be factory prepared with a 100 mm straight section on both ends – for easy connection. Horizontal curves with more than 90 degrees should be divided in two or more sections.

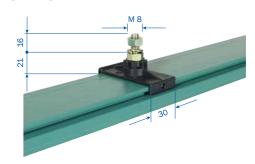
ACCESSORIES FOR VKL


JOINT MATERIAL

Туре	Poles	Weight kg	Order No.
LV 3	3	0.082	281250
LV 4	4	0.084	281251
LV 5	5	0.086	281252

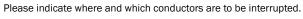

END CAP

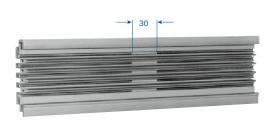
suitable for left hand and right hand installation


V/F	
VE 0.040	280160

FIXPOINT HANGER

Туре	Weight kg	Order No.
VEP	0.053	281470

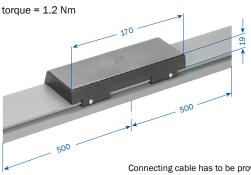

SLIDING HANGER



Туре	Weight kg	Order No.
VA	0.050	281438

CONDUCTOR DEAD SECTION

for control signals(2)


Туре	Order No.
VST 1	280200
VST 2	280210
VST 3	280220
VST 4	280230
VST 5	280240

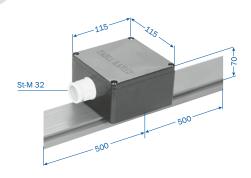
LINE FEED(1)

for direct cable connection

max. cable outer - Ø 16.5 mm

max. cable-cross-section 4 mm², terminal bolt M 4

Connecting cable has to be provided by customer.


Type ⁽³⁾	A	Weight kg	Order No. (with PE) HS	Order No. (without PE) SS
VLE 3/30	30	1.740	281325	281326
VLE 4/30	30	1.900	281327	281328
VLE 5/30	30	2.065	281329	281330

- The line feeds come ready assembled on 1m conductor rail sections. Cable by others.
 Terminal markings see page 24.
 Suffix types e. g. VLE 3/30 with PE R VLE 3/30 HS Order No. 281325.

ACCESSORIES VKL/KTW-SYSTEM FOR ELECTRIC TOOLS

LINE FEED((1)

with terminal box for connecting cable $4\,\text{mm}^2$ terminal bolt M 4 – Torque = 1.2 Nm

Type ⁽²⁾	Ampa- city A	Weight kg	Order No. (with PE) HS	Order No. (without PE) SS
VNK 3/30	30	1.750	281331	281332
VNK 4/30	30	1.950	281333	281334
VNK 5/30	30	2.100	281335	281336

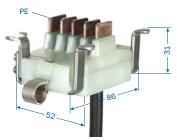
Туре	Weight kg	Order No.
VM for single collectors	0.190	280310
AM for double collectors (2x VSR)	0.225	280640

END FEED, LOOSE(1)

Cable gland to 4 mm²

Installation left or right possible for power and control

Туре	Ampacity A	Weight kg	Order No.
VEK 3-5	30	0.140	281436


CURRENT COLLECTOR VSR

for straight and curved runs

Travelling speed: 60 m/min. in curves

120 m/min. for straight runs

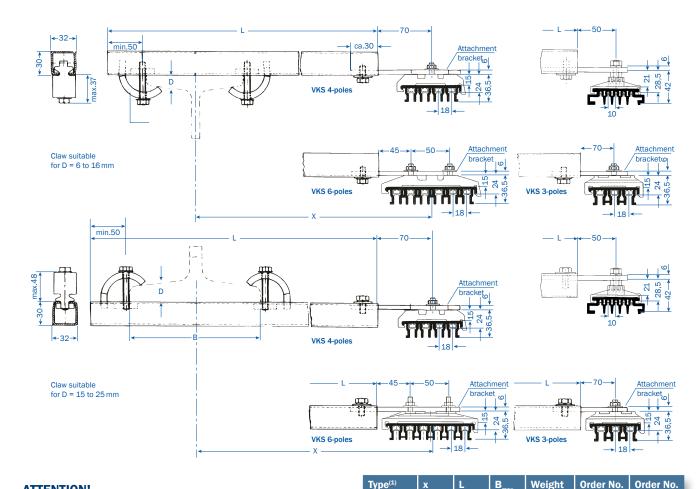
Carbon brushes not replacable.

connecting cable: 1.5 mm^2 (1 m long)

Type ⁽²⁾	Ampa- city A	Poles	Weight kg	Order No. (with PE) HS	Order No. (without PE) ST
VSR 3/10	10	3	0.330	280250	281172
VSR 4/10	10	4	0.360	280260	281171
VSR 5/10	10	5	0.420	280270	281189

VAHLE KTW / V-SYSTEM

These systems consist of a mounting rail with carrier wagon for holding the power tools and a plastic conductor rail for the power supply for tools. The wagon is supplied with a mounting plate on which electrical plugs, automatic circuit breakers or other electrical components can be mounted by the customer. The current collector trolley is mechanically connected to the current collector by a joint. The support rail and conductor rail are attached to a common suspension bracket, which can also be used for suspension of the entire system. Please ask for our detailed documentation.



KTW / V with type VKL

⁽¹⁾ Feed is mounted on 1 m sections. End feed comes loose in components. Section is to be ordered separately (see page 24).

⁽²⁾ Suffix types e.g. VNK 3/30 with PE R VNK 3/30 **HS** Order No. 281331.

BRACKETS AND SNAP-ON BRACKETS VKS, VKL

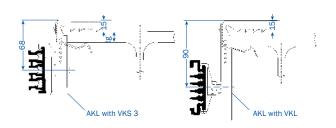
ATTENTION!

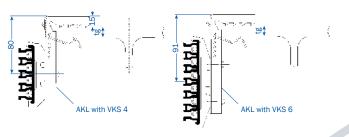
Make sure that hoist wheels of monorail systems have enough clearance.

C-rail of HKV is identical to type S1 for cable carriers (catalog 8a).

Hangers to be ordered separately.

The corresponding beam width $(\mathbf{B}_{\text{max}})$ could be enlarged by a reduction of X.

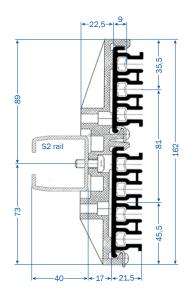

	mm	mm	mm	kg	VKS	VKL
HK200	200	300	90	0.920	150600	280550
HK250	250	350	180	0.970	150610	280560
HK300	300	400	230	1.020	150620	280570
HK400	400	500	230	1.120	150630	280580
HK500	500	600	230	1.220	150640	280590
HK600	600	700	230	1.320	150650	280600
HK700	700	800	230	1.420	150660	280610
HK750	750	850	230	1.470	150670	280620
HK800	800	900	230	1.560	150680	280630


Туре	AKL					
Beam flange tg/mm	8-13	14-19	20-25	26-31	32-37	38-43
Weight/kg	0.184					
Order No.	151925					

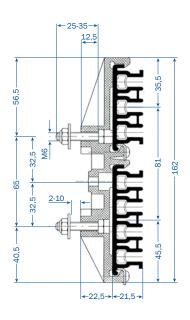
Hangers for conductor system to be ordered separately.

SNAP-ON BRACKETS

Snap-on brackets facilitate installation of conductor system on flat flange beams IPE-, IPB-, IPBI- and IPBv. They are adjustable to suit beam flange dimensions (tg) of up to $43\,\mathrm{mm}$.



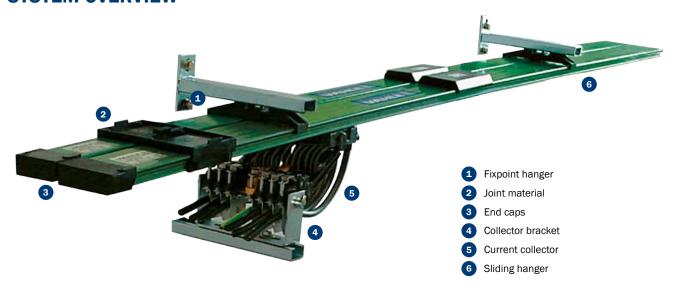
7-POLE VKS SYSTEM FOR HRL


This system combines a VKS 4-pole and VKS 3-pole conductor rail in a common hanger clamp.

Possible fixing methods are shown below. All available VKS 4-pole and VKS 3-pole conductor systems can be combined. All standard components of VKS conductor system can be used. Restrictions apply to line feeds VNS, end feeds VEKS, transfers and towing arms (consult factory for these components).

FIXPOINT HANGER VEPS AND SLIDING HANGER VAS

	←22,5→
\$2 rail 9W	SHIFT SHIFT C C C C C C C C C C
← —40—	→ -15



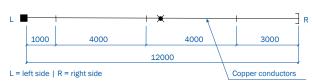
Туре	Wgt. kg	Order No.
VEPS 4/3 SF M 6x16	0.100	156114
VAS 4/3 SF M 6 x 16	0.080	156115

Туре	Wgt. kg	Order No.
VEPS 4/3 GP M 6	0.121	156116
VAS 4/3 GP M 6	0.101	156117

Туре	Wgt. kg	Order No.
VEPS 4/3 M 6x35	0.119	156772
VAS 4/3 M 6x35	0.099	156089

SYSTEM OVERVIEW

EXAMPLES FOR ORDERING VKS AND VKL

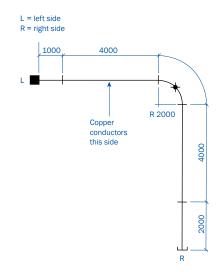

STRAIGHT TRACK WITH END FEED(1)

12 m VKS 3/100; VKL 3/30 HS

Layout VKS

L = Left side | R = right side | Copper conductors

Layout VKL

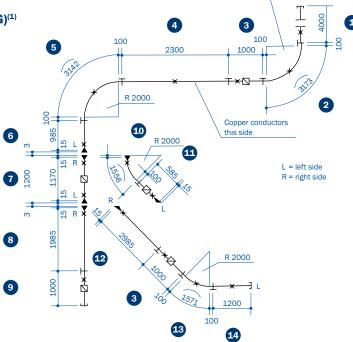


Qty	Description	Туре	Order No.	Qty	Туре	Order No.
2	Conductor rail, 4 m long	VKS 3/100-4 HS	153904	2	VKL 3/30-4 HS	281194
1	Conductor rail, 3 m long	VKS 3/100-3 HS	153903	1	VKL 3/30-3 HS	281193
1	Conductor rail, 1m long	VKS 3/100-1 HS	153901	1	VKL 3/30-1 HS	281191
3	Joint material	SVN 3/63-100	156533	3	LV 3	281250
4	Fixpoint hanger	VEPS 3	153070	1	VEP	281470
10	Sliding hangers	VAS 3	153060	10	VA	281438
1	End cap	VES 3	153080	1	VE	280160
1	End feed	VEKS 3/10-120 L	156422	1	VEK 3-5	281436
1	Collector	KESR 32-55F-3-18 HS	157285	1	VSR 3/10 HS	280250
-	Tow arm	-	-	1	VM	280310
14	Support bracket	HKVKS 300	150620	14	HKVKL 300	280570

CURVED TRACK WITH END FEED(1)

14.142 m VKL 5/30 HS

Qty	Description	Туре	Order No.
2	Conductor rail, 4 m long	VKL 5/30-4 HS	281234
1	Conductor rail, 2 m long	VKL 5/30-2 HS	281232
1	Conductor rail, 4 m long for inside curve lateral 90°; R = 2000 mm; L = 3.142 m	VKL 5/30-4 HS	281234
1	Bending surcharge inside curve		280520
4	Joint material	LV 5	281252
1	Fixpoint hanger	VEP	281470
15	Sliding hangers	VA	281438
1	End cap	VE	280160
1	End feed, 1 m long	VEK 3-5	281436
1	Collector	VSR 5/10 HS	280270
1	Tow arm	VM	280310



EXAMPLE FOR ORDERING VKS

CURVED TRACK WITH SWITCH (LATERAL MOUNTING)(1)

27.857 m VKS 6/63 HS

R 2020

Qty	Description		Туре	Order No.	Position			
1	Conductor rail, 4 m long		VKS 6/63-4 HS	154194	0			
2	Conductor rail, 3 m long cut to:	1x2.985 m 1x2.300 m	VKS 6/63-3 HS	154193	12 4			
3	Conductor rail, 2 m long cut to:	1x1.985 m 1x1.200 m 1x1.170 m	VKS 6/63-2 HS	154192	347			
3	Conductor rail, 1m long		VKS 6/63-1HS	154191	39			
2	Conductor rail, 1 m long cut to: 1x0.985 m 1x0.585 m		VKS 6/63-1 HS	154191	60			
2	Conductor rail, 4 m long 1x for outside curve 90°; R = 2020 mm; L = 3 1x for inside curve 90°; R = 2000 mm; L = 3		VKS 6/63-4 HS	154194	26			
2	Conductor rail, 2 m long 1x for inside curve ~ 45°; R = 2000 mm; L = 1x for inside curve 45°; R = 2000 mm; L = 1		VKS 6/63-2 HS	154192	10 13			
1	Bending surcharge (outsi	de curve)		152100				
3	Bending surcharge (insid	e curve)		153722				
10	Joint material		SVN 6/63-100	156539				
16	Fixpoint hangers		VEPS 6	152120				
22	Sliding hangers		VAS 6	152130				
3	End caps on above positi	on. 1, 9, 14	VES 6-M	152021				
2	Line feeds installed on po	osition 3, 7, 9, 11	VLS 6/63	156945				
3	Transfer guides, left insta	alled on Pos. 6, 7, 11	VU 6 S-M	153801				
4	Transfer guides, right inst	talled on Pos. 7, 8, 10, 12	VU 6 S-M	153802				
1	Compact collector, Groun	d on No. 3	KESR 32-55S-6-18 HS	157223				

⁽¹⁾ Layout symbols see page 7.

QUESTIONNAIRE

Company:								Date:							
Fon:								Fax:							
E-mail:							Intern	Internet:							
1. Number of c	onductor s	ystem ir	nstallation	ns:											
2. Type of equi	Type of equipment to be powered:														
3. Operating vo	. Operating voltage: Volt Frequency: Hz														
☐ Three-pha	ase voltage	AC	voltage	☐ DC v	oltage										
4. Track length	Track length:														
. Number of conductors: neutral: control: ground:															
6. Mounted position of conductor system:															
☐ Conducto	Conductor system pendant, collector cable facing to the bottom Conductor system pendant, lateral payout of conductor cable Conductor system pendant Conductor system penda														
	Support distance m (max. 2 m)														
7. Number of c	onsumers	per syst	em:												
8. Indoor sy	stem 🔲 (Outdoor	system												
9. Other operation	ting conditi	ons (hui	midity, du	st, chem	ical inf	luence, et	c.)								
10. Ambient tem															
11. Hall expansi	on joints _		pieces		 _ expai	nsion max	C.								
12. Position and	-														
13. Position and		-													
14. How will the															
15. Brackets red			_												
16. Travel speed			-				-								
17. Max. voltage										ırrent.					
18. Power consu	•		•		•				_						
					_										
	Crane 1	Crane 1						Crane 2							
Motor data	Power kW	Nominal current			Starting		Type of	Power	Nominal current			Starting		Type of	
					curre	1	motors (2)	kW		<u> </u>		curre	1	motors (2)	
Hoist motors		A	COS φN	% duty	A	COS (PA			A	COS φN	% duty	Α	COS (PA		
Auxiliary hoist															
Long travel															
Cross travel															
Mark with * thos	se motors v	hich ca	n run sim	ultaneou	sly.										
Mark with Δ thos	se motors v	vhich ca	n start up	simultaı	neousl	y.									
Further remarks	·														
								Si	ignature	e:					

 ⁽¹⁾ For curved tracks, conductor system with isolating sections etc., we require sketches to enable us to prepare a quotation
 (2) Use: K for squirrel cage motor, S for slipring motor, F for frequency controlled motor
 We reserve all rights to make alterations in the interests of further development Please copy and fill in the questionnaire.

AVAHLE

Paul Vahle GmbH & Co. KG

Westicker Str. 52 59174 Kamen Germany

Tel.: +49 2307 704-0 Fax: +49 2307 704-444 info@vahle.de

www.vahle.com